
Plotting the spirograph equations with gnuplot

Vı́ctor Luaña∗
Universidad de Oviedo, Departamento de Qúımica F́ısica y Anaĺıtica, E-33006-Oviedo, Spain.

(Dated: October 15, 2006)

gnuplot1 internal programming capabilities are used to plot the continuous and segmented ver-
sions of the spirograph equations. The segmented version, in particular, stretches the program
model and requires the emmulation of internal loops and conditional sentences. As a final exercise
we develop an extensible minilanguage, mixing gawk and gnuplot programming, that lets the user
combine any number of generalized spirographic patterns in a design.

Article published on Linux Gazette, November 2006 (#132)

I. INTRODUCTION

Imagine the movement of a small circle that rolls, with-
out slipping, on the inside of a rigid circle. Imagine now

that the small circle has an arm, rigidly atached, with a
plotting pen fixed at some point. That is a recipe for
drawing the hypotrochoid,2 a member of a large family
of curves including epitrochoids (the moving circle rolls
on the outside of the fixed one), cycloids (the pen is on
the edge of the rolling circle), and roulettes (several forms
rolling on many different types of curves) in general.

The concept of wheels rolling on wheels can, in fact, be
generalized to any number of embedded elements. Com-
plex lathe engines, known as Guilloché machines, have
been used since the XVII or XVIII century for engrav-
ing with beautiful designs watches, jewels, and other fine
craftsmanships. Many sources attribute to Abraham-
Louis Breguet the first use in 1786 of Gilloché engravings
on a watch,3 but the technique was already at use on jew-
elry. Ancient machines still at work can be seen at RGM
Watch Company webpages.4 Intrincated Guilloché pat-
terns are usually incorporated on bank notes and official
documents to prevent forgery. The name “Spirograph”
comes, actually, from the trade denomination of a toy
invented in 1962 by Denys Fisher, a british electronic
engineer, and licensed to several toy companies over the
years.

Our purpose, however, is not to explore the history or
even the mathematical aspects of the Spirograph deco-
rations, but rather our interest is centered on the tech-
niques needed to use gnuplot as the drawing engine of
the cycloid-related curves.

Section II presents a simple derivation for the hypotro-
choid equations and discusses a generalization to any
number of rolling wheels due to F. Farris.5 Section III
describes the several techniques required to draw the
cycloid-related curves with gnuplot. From the use of
complex arithmetic to the simulation of an implicit do
loop and the recursive definition of user functions, gnu-
plot offers a large capability for the creation of algorith-
mic designs. The techniques discussed in section III are
embedded within a simple gawk filter that reads a for-
mal description of a cycloid pattern and uses gnuplot
to produce the final plot. The design of this filter is the
subject of section IV.

� �� �

�

�

�

�

�

O

O′

P

Q

S

T

ϕ

ϕ

β

R

r p

FIG. 1: Geometry for the hypotrochoid equations. The
grayed figure corresponds to R = 9, r = 2, and p = 3.

II. THE HYPOTROCHOID AND SOME
RELATED CURVES

Figure 1 shows the formation of a hypotrochoid and
will help us in determining the parametric equations

for the curve. Three lenghts determine the shape of the
curve: R, the radius of the fixed circle; r, the radius of
the moving circle; and p, the distance from the pen to
the moving circle center. The center of the fixed circle,
point O, will serve as the origin of coordinates. Points O′

and P designate the current position of the rolling circle
center and of the pen, respectively.

The current position for O′ is easily described in circu-
lar coordinates: fixed length OO′ = (R− r) and variable
angle ϕ. This is easily translated into cartesian coordi-
nates:

xOO′ = (R− r) cos ϕ, yOO′ = (R− r) sinϕ. (1)

2

Similarly, the position of the pen relative to O′ is also
simple to describe in circular coordinates: fixed length
O′P = p and variable angle 2π − β ≡ −β. In cartesian
coordinates:

xO′P = p cos β, yO′P = −p sinβ. (2)

The angles ϕ and β are not independent, however. The

circles roll without slipping. Hence, the arc
︷ ︷
QS = Rϕ on

the fixed circle must be identical to the arc
︷ ︷
TS = r(ϕ+β)

on the rolling circle. The relationship β = (R − r)ϕ/r
follows immediately. This equation is easy to interpret
in terms of a gearing mechanism. The fixed and rolling
wheels must have teeth of equal size to be able to en-
gage together. Therefore, the number of teeth must be
proportional to the wheel perimeter and, equivalently, to
the wheel radius.

Using all together, the current position of the pen
relative to the fixed center O is given by ~r = ~rOP =
~rOO′ + ~rO′P, or, equivalently:

x(ϕ) = (R− r) cos ϕ + p cos
(

R− r

r
ϕ

)
, (3)

y(ϕ) = (R− r) sinϕ− p sin
(

R− r

r
ϕ

)
. (4)

The equations admit r and p being either positive or
negative. A negative r would represent a moving wheel
rolling on the outside, rather than the inside, of the fixed
cirumference, i.e. it will be a epitrochoid curve. Choosing
p = r with r positive or negative, will produce hypo or
epicycloid curves, respectively.

It is easy to observe that multiplying the three param-
eters R, r, and p by a common factor produces a global
scaling of the curve dimensions but do not changes its
shape. On the other hand, the figure traced by this para-
metric equations closes only if R/r is a rational number.
Let us assume that n and m are the smallest integers such
that |R/r| = n/m, and let g = gcd(n, m) be the greatest
common divisor of n and m. The curve will then close
after a total rotation of m/g times 2π (ϕ ∈ [0, 2mπ]) and
it will show n/g lobes or spikes.

The equations can be generalized for three or more
wheels rolling one inside each other, and Frank Farris
did so in a celebrated article on Mathematics Magazine.5
At this level it is better to give up a direct simulation of
the physical engine gears and examine directly the equa-
tions. On the other hand, a very compact and powerful
notation is obtained by using complex variables, with the
convention that the real and imaginary parts represent
the x and y cartesian coordinates, i.e. z = x + iy where
i is the imaginary number. The general Farris equations
are:

z(t) =
n∑

k=1

akei2π(nkt+θk), t ∈ [0, 1], (5)

where n is the number of engaged wheels: wheel k have
its center fixed on a point of the circunference of wheel
k−1. On each wheel, ak is related to the radius, nk to the
rotation speed, and θk is an initial phase angle. Farris
demonstrated that the z(t) curve has g-fold rotational
symmetry if all the pairwise differences |nk − nj | have g
as their greatest common divisor.

III. RENDERING THE CURVES IN GNUPLOT

The two wheels parametric equations, eq. 3 and 4,
can be readily translated into the following gnuplot

drawing code:

1 set terminal png size 600 ,600 \

2 x000000 xffffff x404040 xff0000

3 set output "fig -spiro02.png"

4 set size ratio -1

5 set nokey

6 set noxtics

7 set noytics

8 set noborder

9 set parametric

10 #
11 x(t)=(R-r)*cos(t) + p*cos((R-r)*t/r)

12 y(t)=(R-r)*sin(t) - p*sin((R-r)*t/r)

13 #
14 R=100.0; r=2.0; p=80.0

15 set samples 2001

16 #
17 plot [t=0:2*pi] x(t),y(t)

The code saves the image as a PNG file, useful for
insertion on a web page, but any gnuplot termi-

nal could be used. An EPS/PDF vector file with white
background is better for a printed version of the docu-
ment, whereas an unscaled PNG raster file with black
background may look better and render faster in a web
browser. The use of the PNG terminal is a little tricky, as
two versions that differ in the recognized syntax appear
to exist. If gnuplot chokes on the png size 600,600
part try using png picsize 600 600 instead. Notice, on
the other hand, that we have removed the default axes,
labels and tics. Identical scaling of both axes has also
been enforced to avoid distortion of the image. The re-
sult can be seen in Fig. 2.

A little exploration will reveal that: (a) p = 0 produces
a circle; (b) an ellipse results if R = 2r and p 6= r, its
axes being (r + p) and |r − p|; (c) the hypocycloids are
obtained by choosing p = r; (c) R = 2r = 2p gives rise
to a line of length 2a; (d) negative values for p and/or r
results on some extraordinary specimens.

The beauty and diversity of the trochoid curves calls
for a journey of exploration and discovery. This is

much facilitated if the gnuplot code is embedded in a text
or graphical user interface (TUI vs. GUI). A simple csh
script can serve as a rudimentary but effective wrapper:

3

FIG. 2: Hypotrochoid curve for: R = 100, r = 2 and p = 80.

1 #! / b in / csh
2 set code = $0:t

3 if ($#argv < 3) goto he l p
4 set n1 = $1; set n2 = $2; set n3 = $3

5 set a1 = 1.0; set a2 = 1.0; set a3 = 1.0

6 set s1 = 0.0; set s2 = 0.0; set s3 = 0.0

7 if ($#argv >= 4) s e t a1 = $4
8 if ($#argv >= 5) s e t a2 = $5
9 if ($#argv >= 6) s e t a3 = $6

10 if ($#argv >= 7) s e t s1 = $7
11 if ($#argv >= 8) s e t s2 = $8
12 if ($#argv >= 9) s e t s3 = $9
13

14 cat << EOF | gnuplot

15 set size ratio -1

16 set nokey

17 set noxtics

18 set noytics

19 set noborder

20 set parametric

21 #
22 n1p = {0 ,1}*2*pi*${n1}

23 n2p = {0 ,1}*2*pi*${n2}

24 n3p = {0 ,1}*2*pi*${n3}

25 s1p = {0 ,1}*2*pi*${s1}

26 s2p = {0 ,1}*2*pi*${s2}

27 s3p = {0 ,1}*2*pi*${s3}

28 z(t) = ${a1}*exp(n1p*t+s1p) \

29 + ${a2}*exp(n2p*t+s2p) \

30 + ${a3}*exp(n3p*t+s3p)

31 #
32 set terminal png size 600 ,600 x000000 \

33 xffffff x404040 xff0000 xffa500 x66cdaa \

34 xcdb5cd xadd8e6 x0000ff xdda0dd x9500d3

35 set output "fig -spiro03.png"

36 #
37 set samples 2001

38 plot [t=0:1] real(z(t)),imag(z(t))

39 EOF

40

41 xv fig -spiro03.png

42 exit (0)

43

44 help:

45 cat << EOF

46 USE: $code n1 n2 n3 [a1 a2 a3 [s1 s2 s3]]

47 PURPOSE: Plot Farris wheels on wheels on wheels

48 curve for (n1,n2 ,n3 ,a1 ,a2 ,a3,s1 ,s2,s3).

49 Default value for a1 , a2 , a3: 1.0.

50 Default value for s1 , s2 , s3: 0.0.

51 EXAMPLE: $code 1 7 -17 1 0.5 1.0/3 0 0 0.24

52 EOF

In this example we have used Farris equations for
three wheels. Complex numbers (notice the {0,1}

constant, equivalent to i in gnuplot sintax) are used
to evaluate the z(t) function, but its real and imaginary
parts must be explicitely extracted and passed to the
plot order. Therefore, z(t), is actually called twice for
each point. Perhaps future gnuplot versions will recog-
nize a single complex expression as a complete argument
of the parametric plot. In any case, the complex arith-
metic provides a very compact notation.

The script, on the other hand, can be called with any-
thing from 3 to 9 parameters. The three obligatory pa-
rameters are n1, n2 and n3, that adjust the relative speed
of the three wheels. The next group of three are a1, a2

and a3, related to the relative size of the wheels, and
a default value of 1,0 is assumed for any parameter not
given in the input. The last group corresponds to the
initial phase angles, θ1, θ2 and θ3, with a default value
of 0,0. The script parameters are used only within gnu-
plot assignments. This means that the user can en-
ter expressions rather than single integer or real values.
Some care must be taken, however, when entering frac-
tions: use 1,0/3 and not 1/3, that would be interpreted
by gnuplot as an integer division and would produce
an unexpected 0.

Figure 3 represents some of the most characteristic pat-
terns exhibited by three rolling wheels of identical size.
These patterns occur when the wheel speeds, [n1, n2, n3],
their differences, ∆nij = nj − ni, and the greatest com-
mon divisor of the differences, g = gcd(|∆nij |), satisfy
appropriate conditions. Large values for g produce highly
symmetric and generally nice motives. Some of the most
pleasant designs, however, show only a moderate symme-
try and a more subtle interplay between regularity and
uniqueness.

Some trends, found by the observation of a large num-
ber of cases, can help in designing a particular motif. As-
suming that the three wheels are of equal size, differences
like (−g, 2g, 3g) can produce g-points stars, whereas g-
petals daisies tend to happen for (±2g,±g,±g) differ-
ences. Palm leaves and nephroids occur when two of the
∆nij differences coincide, in absolute value, with two of
the wheel speeds. Crosses and Maasai shields are rara
avis that require a large number of circumstances: the

4

FIG. 3: Typical patterns shown by three rolling wheels of equal size. From left to right and top to bottom: (a) [7,−5, 2] palm
leaf, (b) [19,−13, 3] daisy flower; (c) [13,−7,−3] cross; (d) [19, 17,−2] nephroid; (e) [13,−11,−3] 8-point star; (f) [11,−7,−3]
Maasai shield.

sum of all wheel speeds must be odd (positive or neg-
ative), g must be a power of 2, the sum of two of the
differences must be equal to the third.

Changing the wheel sizes will also produce significant
variations on the drawings. Adding small phase angles to
one or more wheels can be used to introduce some irregu-
larity into an otherwise too symmetric and uninteresting
motif.

The two previous example codes have sampled the
spirographic equations with a large number of

points, large enough to show the true nature of the
curves: continuous and derivable, as they are sums of
exponential functions. The web is plenty of simplistic
java applets that render incorrectly the equations by us-
ing a small number of points per roll. The method, albeit
a wrong representation of the true curves, can produce
quite pleasent images. On a declarative language this
type of plot would be produced using a simple loop:

nturns = abs(rsmall) / gcd(Rbig,abs(rsmall))
M = nturns * resolution
inumber = {0,1}

for (k=0; k<=M; k++) {
ang1 = inumber * k * 2*pi/M
ang2 = ang1 * (rsmall-Rbig)/rsmall
z[k] = (Rbig-rsmall)*exp(ang1) + p*exp(ang2)
if (k>0) { PLOT LINE from z[k-1] to z[k] }
}

where resolution holds the number of sample
points used for each roll around the main (fixed)

wheel and nturns is the number of times this wheel must
be rolled around. The above pseudocode assumes com-
plex arithmetic and the availability of a gcd() function.

Loops and conditional sentences are not part of the
gnuplot language, but there are ways around this lim-
itation. First, an implicit loop is automatically done on
each plot order. We just have to be careful fixing an ap-
propriate samples value and a correct range for the in-
dependent variable (the parametric variable in our case).
The ternary operator (a?b:c, evaluate and return b if a
is true, and c otherwise) can be used as a restricted con-
ditional form. gnuplot user-defined functions can be
recursive, on the other hand, and this can also be used
as a restricted form of loop.

The next code uses all of the above ideas. Notice, in
particular, the recursive definition of the gcd() function,

5

FIG. 4: Curve stitching patterns from the hypotrochoid curve
with: R = 100, r = 2 and p = 70. The three patterns
correspond to a resolution of 75, 125 and 175 sample points,
respectively.

that implements Euclid’s algorithm for the greatest com-
mon divisor. The calculation of the number of turns and
sample points is simplified by assuming that R and r are
integers.

1 set size ratio -1

2 set nokey

3 set noxtics

4 set noytics

5 set noborder

6 set parametric

7 #
8 x(t) = (R-r)*cos(t) + p*cos((R-r)*t/r)

9 y(t) = (R-r)*sin(t) - p*sin((R-r)*t/r)

10 #
11 # Gre a t e s t common d i v i s o r :
12 gcd(x,y) = (x%y==0 ? y : gcd(y,x%y))

13 #
14 R = 100; r = -49; p = -66; res = 10

15 #
16 rr = abs(r)

17 nturns = rr / gcd(R,rr)

18 samp = 1 + res * nturns

19 set samples samp

20 #
21 plot [t=0: nturns *2*pi] x(t),y(t)

The last code works well for drawing a single curve
with a given resolution, but the most interesting patterns
are obtained by mixing several renderings of one or more
curves with well chosen resolutions. To do this within a
single gnuplot run we have to take explicit control of
the angles used for each equation. For instance:

1 set terminal png picsize 600 600 x000000 \

2 xffffff x404040 xff0000 xffa500 x66cdaa \

3 xcdb5cd xadd8e6 x0000ff xdda0dd x9500d3

4 set output "fig -spiro05.png"

5 set size ratio -1

6 set nokey

7 set noxtics

8 set noytics

9 set noborder

10 set parametric

11 #
12 # Gene ra l p a r ame t r i c e qua t i o n s :
13 x(t,R,r,p) = (R-r)*cos(t) + p*cos((R-r)*t/r)

14 y(t,R,r,p) = (R-r)*sin(t) - p*sin((R-r)*t/r)

15 #
16 # Values f o r the dummy paramete r :
17 t(i,n) = i*2*pi/n

18 #
19 # Gre a t e s t common d i v i s o r :
20 gcd(x,y) = (x%y==0 ? y : gcd(y,x%y))

21 #
22 # The d i f f e r e n t c u r v e s :
23 R1 = 100; r1 = 2; p1 = 70; res1 = 75

24 R2 = 100; r2 = 2; p2 = 70; res2 = 125

25 R3 = 100; r3 = 2; p3 = 70; res3 = 175

26 #
27 nseg1 = res1 * abs(r1) / gcd(R1 ,abs(r1))

28 nseg2 = res2 * abs(r2) / gcd(R2 ,abs(r2))

29 nseg3 = res3 * abs(r3) / gcd(R3 ,abs(r3))

30 n12 = (nseg1 * nseg2) / gcd(nseg1 ,nseg2)

31 nsamp = (n12 * nseg3) / gcd(n12 ,nseg3)

32 nsamp1 = nsamp + 1

33 set samples nsamp1

34 print "nseg {1,2,3} ---> ", nseg1 , nseg2 , nseg3

35 print "nsamp ---------> ", nsamp

36 #
37 plot [i=0: nsamp] \

38 x(t(i,res1),R1,r1 ,p1),y(t(i,res1),R1 ,r1,p1) \

39 , x(t(i,res2),R2 ,r2,p2),y(t(i,res2),R2 ,r2 ,p2) \

40 , x(t(i,res3),R3 ,r3,p3),y(t(i,res3),R3 ,r3 ,p3)

The result of this code is represented in the figure 4.
The intrincate embroidery of the three curve represen-
tations, only recognizable by their different color, shows
an appealing and delicate beauty that deserves further
exploration. However, using the same plot order for the
three is far from being effective and poses many problems
for its generalization to an arbitrary number and class
of representations. In particular, the number of sample
points has to be a minimum common multiple of the best
number of sample points for each independent figure.

In the case of fig. 4, the three curves would need 75,
125 and 175 sample points, respectively, but plotting the
three simultaneously requires 2625 samples, instead. So,
the first component is repeated 35 times, 21 times the
second, and 15 times the third. This repetition will add
substantially to the plotting time but, if the final result
is written to a raster format like PNG, there will be no
increase on the size of the final file. If we use a vector
format like EPS, however, the file size will also increase
substantially.

We can avoid the unnecessary repetition by turning to
a two pass method. In the first pass, each curve is created
independently in gnuplot, and its points are saved in
a file using a set terminal table output mode. The

6

second pass combines the points from all the previous
files into a single design, that is saved on whatever raster
or vector format seems appropriate. Instead of providing
an example of this technique we will use the idea for our
final and most ambitious project.

IV. A MINILANGUAGE FOR COMBINING AN
ARBITRARY NUMBER OF SPIROGRAPH-LIKE

PATTERNS

All the techniques developed in the previous section
can be made more accesible if we design a simple way

of describing a plot and we create the tool for translat-
ing the description to the appropriate gnuplot orders.
The perfect translation tool would hide the details of the
gnuplot sintax from the user while maintaining an ap-
propriate flexibility.

We have written an experimental translator in awk for
rapid prototyping and easy change. We are going to de-
scribe the language currently recognized. The following
notation will be used. Fixed names are written in bold-
face. Variable data appears in italica, enclosed within
square brackets, [], if the data is optional. The type of
the data is indicated by a suffix of the variable name:
var.s (a string sequence); var.i (an integer); var.r (a real
value); var.c (a complex value in gnuplot notation, i.e.,
{real part,imaginary part}); var.re and var.ce (a real
or complex expression, like pi*{0,1}/12). Blank char-
acters are forbidden within the integer, real and complex
data and expressions.

The instructions currently implemented in our trans-
lation script are:

PROJECT projectname.s
The project name serves as root for the names of
all the files, temporary or final, that the drawing
process requires.
Default projectname: tmp.

TERMINAL parameters.s
Select a gnuplot terminal type. Typical elections
would be PNG or EPS, but any type accepted by
gnuplot will serve.
Default: png size 600,600 x000000 xffffff x404040
...

CURVE samples.i
Start a new curve. A plot is formed by one or more
curves. Each curve is made by one or more terms.
Each curve is computed independently and written
to a temporary file. All curves are plotted together
at the end to form the final image. The default
number of sample points (2001) can be changed
independently for each curve. Some special term
types (like TROCHOID) may take control of this

and ignore the samples value. The general form of
a curve is:

z(t) =
N∑

k=1

zk(t)

where t is the independent parameter and zk(t) =
xk(t)+ iyk(t) is a complex term contribution to the
curve.

ADDTERM LINE z0.ce z1.ce
Add a linear term contribution to the current curve:

zk(t) = z0 + (z1− z0)t

The line passes through z0 and z1, two arbitrary
points in the complex plane. Remember than com-
plex values are entered using the gnuplot nota-
tion: {x,y} means x+ iy. Blank character must be
avoid within each number.

ADDTERM SPIRAL1 a.re [n.i]
Add a generalized Archimedes spiral:

zk(t) = a(2πt)nei2πt

Default: n = 1.

ADDTERM SPIRAL2 a.re b.re
Add a equiangular spiral:

zk(t) = aet/ tan bei2πt.

Maximize the number of spiral rolls by choosing b
close to ±π.

ADDTERM TROCHOID R.re r.re p.re [samples.i]
Add a trochoid term:

zk(t) = (R− r)ei2πt + pe−i2π(R−r)t/r.

If samples is given, the number of sampling points
and the number of curve rollings is internally com-
puted.

ADDTERM WHEEL a.re n.re s.re
Add a Farris rolling wheel term:

zk(t) = aei2π(nt+s)

where a is the wheel radius, n the rolling frequency,
i.e. the number of rolls when t goes from 0 to 1, and
s determines the initial phase angle. An arbitrary
number of Farris wheels can be added in a curve.

STYLE style.s
This order takes control of the gnuplot style used
on the current curve and its copies (see the LOOP
order below). The style.s must follow the gnuplot
sintax. For example: style lt 1 (line type 1 for
all copies of the curve), style with points pt -1
(use points instead of lines). The default style is to
use lines for the curves, increasing the line number
style for each successive curve, including copies.

7

LOOP var.s var ini.r var end.r [var inc.r]
Repeat the current curve according to the next im-
plicit loop:

var = var_ini
while (var does not reach var_end) do

compute and draw a new installment
of the current curve
var = var_ini + (var_inc)

end

The var.s string can be used as a variable in the
definition of the curve (see the examples below).
The var inc.r value can be negative. There is cur-
rently a limit of 1000 times for the number of copies
produced by this loop.

TRANGE t0.r t1.r
Change the default range for the t parametric vari-
able. Notice that the presence of a trochoid term
may take control for t and ignore this input.
Default: t ∈ [0, 1].

GFACTORS freal.re fimag.re
Multiplicative factors for the real and imag-
inary parts of the drawn functions. In
other words, the image finally drawn is
plot freal*real(z(t)), fimag*imag(z(t)).
Default: freal = fimag = 1.0.

LABEL x.r y.r text.s
Add a gnuplot label at the indicated position.
The plot center has coordinates (0,0). The label is
centered on the (x,y) point. The plot can contain
any number of labels, but the program makes no
attempt to avoid collisions between them.

Some examples of the above rules in action may help
to understand its possibilities. The first example, repre-
sented in Fig. 5(a), shows the use of a simple trochoid
curve with a small sampling:

project example01
curve 10

addterm trochoid 100 -49 76

The second example shows the use of a loop order to
create copies of a curve, applying a little phase rotation
and size change to each new copy. See the resulting image
in Fig. 5(b):

project example02
terminal png size 600,600 x000000
curve

style lt 1
loop kkk 0 20 1

addterm wheel 4*0.98**kkk -3 kkk/200.
addterm wheel 5*1.02**kkk 2 kkk/200.

The third image, Fig. 5(c), corresponds to a multiple
copy version of three Farris wheels:
project example03
terminal png size 600,600 x000000
curve

style lt 1
loop kkk 0 20 1
addterm wheel 4 -5 -kkk/60.
addterm wheel 3 2 kkk/60.
addterm wheel 2 9 0.

Our last example shows a decoration around a text. The
decoration was designed by starting with a large Farris
wheel and adding two other much smaller wheels, always
maintaining an 8-fold symmetry. The use of gfactors
provides an easy way to stretch an otherwise round motif.

project example04
terminal postscript eps enhanced color "Helvetica" 48
gfactors 1.4 0.7
curve

style lt 1
loop kkk 0 10 1
addterm wheel 200*0.96**kkk 1 0.
addterm wheel 10*0.96**kkk 9 0.
addterm wheel 9*0.96**kkk 23 0.

label 0 0 G_nuplot rules!

V. FINAL REMARKS

We should not end this report without mentioning,
at least, some of the excellent java applets that can

be found on Internet.6–10 A well conceived GUI can be
of great help on the interactive exploration of a designed
subset of the Spirograph vast parametric space. It is
not the only approach, however. A custom minilanguage
can give access to an arbitrarily large parametric space
and hide the dirty details of code generation. Gnuplot
engine has been used for years to produce professional
quality plots. Some of its drawbacks, like the lack of true
loop mechanisms, can be saved with some ingenuity or
embedding the engine within a more general program-
ming tool.

Acknowledgements

The author thanks the Spanish Ministerio de Ed-
ucación y Ciencia for financial support under project
BQU2003-06553.

∗ E-mail: victor@carbono.quimica.uniovi.es; Visit:
http://web.uniovi.es/qcg/

1 T. Williams, L. Hecking, and H.-B. Broeker, Gnuplot,

8

Gnuplot rules!

FIG. 5: Example images created with the help of the SpiroLang minilanguage. See the text for a description of the patterns
and the actual orders used to create them.

version 4 (2004), based on the original version released
by Thomas Williams and Colin Kelley in 1986., URL
http://www.gnuplot.info/.

2 E. W. Weisstein, Hypotrochoid, from MathWorld–A Wol-
fram Web Resource (2006), last accessed 2006-09-06., URL
http://mathworld.wolfram.com/Hypotrochoid.html.

3 C. Pérez, L’ancien regime. Part two: The heritage
of the classical wristwatch (2000), last accessed 2006-
09-06., URL http://people.timezone.com/msandler/

Articles/CarlosClassical/Classical.html.
4 RGM watches company, Engine-turning “guilloche”

(2006), last accessed 2006-09-06., URL http://www.

rgmwatches.com/engine.html.
5 F. Farris, Mathematics Magazine 69, 185 (1996).
6 A. Páramo Fonseca, La gran belleza de las tro-

coides (2004), last accessed 2006-09-30., URL http:

//temasmatematicos.uniandes.edu.co/Trocoides/

paginas/introduccion.htm.
7 D. Little, Spirograph (2001), last accessed 2006-

09-30., URL http://www.math.psu.edu/dlittle/java/

parametricequations/spirograph/index.html.
8 D. Little, Spirograph v1.0 (1997), last accessed 2006-

09-30., URL http://www.math.psu.edu/dlittle/java/

parametricequations/spirograph/SpiroGraph1.0/

index.html.
9 A. Garg, Spirograph, last accessed 2006-09-30., URL http:

//www.wordsmith.org/anu/java/spirograph.html.
10 N. Ziring, Spiro applet version 1.0 (2000), last ac-

cessed 2006-09-30., URL http://cgibin.erols.com/

ziring/cgi-bin/spiro.pl/spiro.html.

